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Abstract
Collective excitation spectra of Dirac electrons in mono- and bilayer graphene in the presence
of a uniform magnetic field are investigated. Analytical results for inter-Landau-band plasmon
spectra within the self-consistent-field approach are obtained. Shubnikov–de Haas (SdH) type
oscillations that are a monotonic function of the magnetic field are observed in the plasmon
spectrum of both mono- and bilayer graphene systems. The results presented are also compared
with those obtained in a conventional two-dimensional electron gas (2DEG). The chiral nature
of the quasiparticles in mono- and bilayer graphene systems results in the observation of π and
2π Berry’s phase in the SdH-type oscillations in the plasmon spectrum.

1. Introduction

Recent progress in the experimental realization of both
monolayer and bilayer graphene has led to extensive
exploration of the electronic properties in these systems [1, 2].
Experimental and theoretical studies have shown that the
nature of quasiparticles in these two-dimensional systems is
very different from those of the conventional two-dimensional
electron gas (2DEG) systems realized in semiconductor
heterostructures. Graphene has a honeycomb lattice of carbon
atoms. The quasiparticles in monolayer graphene have a
band structure in which electron and hole bands touch at
two points in the Brillouin zone. At these Dirac points the
quasiparticles obey the massless Dirac equation, leading to a
linear dispersion relation εk = vFk (with the Fermi speed vF =
106 m s−1). This difference in the nature of the quasiparticles
in monolayer graphene from conventional 2DEG has given rise
to a host of new and unusual phenomena such as the anomalous
quantum Hall effects and a π Berry phase [1, 2]. These
transport experiments have shown results in agreement with the
presence of Dirac fermions. The 2D Dirac-like spectrum was
confirmed recently by cyclotron resonance measurements and
also by angle resolved photoelectron spectroscopy (ARPES)
measurements in monolayer graphene [3]. Recent theoretical
work on graphene multilayers has also shown the existence of
Dirac electrons with a linear energy spectrum in monolayer
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graphene [4]. On the other hand, experimental and theoretical
results have shown that quasiparticles in bilayer graphene
exhibit a parabolic dispersion relation and they can not be
treated as massless but have a finite mass. In addition, The
quasiparticles in both the graphene systems are chiral [2, 4–7].

Plasmons are a very general phenomena and have been
studied extensively in a wide variety of systems including
ionized gases, simple metals and semiconductor 2DEG
systems. In a 2DEG, these collective excitations are induced
by the electron–electron interactions. Collective excitations
(plasmons) are among the most important electronic properties
of a system. In the presence of an external magnetic field,
these collective excitations are known as magnetoplasmons.
Magnetic oscillations of the plasmon frequency occur in a
magnetic field. Single particle magneto-oscillatory phenomena
such as the Shubnikov–de Haas (SdH) and de Haas–van
Alphen effects have provided very important probes of the
electronic structure of solids. Their collective analogue
yields important insight into collective phenomena [8–15].
Collective excitations of Dirac electrons in monolayer and
bilayer graphene in the absence of a magnetic field have been
investigated [16–20]. Magnetic field effects on the plasmon
spectrum have not been studied so far. In addition, since the
quasiparticles in graphene are chiral, the particles will acquire
Berry’s phase as they move in the magnetic field leading to
observable effects on the plasmon spectrum. To this end, in the
present work, we study the magnetoplasmon spectrum within
the self-consistent-field approach for both the monolayer and
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bilayer graphene systems. Magnetoplasmons can be observed
by inelastic light scattering experiments as revealed in studies
carried out on 2DEG systems [11–15]. Similarly, inelastic light
scattering experiments are expected to yield information about
the magnetoplasmons in graphene. Furthermore, the results
presented here can also be experimentally observed by electron
energy loss spectroscopy (EELS) on graphene [21].

2. Electron energy spectrum in monolayer graphene

We consider Dirac electrons in graphene moving in the x–y-
plane. The magnetic field (B) is applied along the z-direction
perpendicular to the graphene plane. We employ the Landau
gauge and write the vector potential as A = (0, Bx, 0). The
two-dimensional Dirac-like Hamiltonian for a single electron
in the Landau gauge is (h̄ = c = 1 here) [1, 2]

H0 = vFσ · (−i∇ + eA). (1)

Here σ = {σx , σy} are the Pauli matrices and vF characterizes
the electron Fermi velocity. The energy eigenfunctions are
given by

�n,ky (r) = eiky y

√
2L yl

(−i�n−1[(x + x0)/ l]
�n[(x + x0)/ l]

)
(2)

where

�n(x) = e−x2/2

√
2nn!√π

Hn(x),

l = √
1/eB is the magnetic length, x0 = l2ky , L y is the y-

dimension of the graphene layer and Hn(x) are the Hermite
polynomials. The energy eigenvalues are

ε(n) = ωg
√

n (3)

where ωg = v
√

2eB is the cyclotron frequency of the
monolayer graphene and n is an integer. Note that the Landau
level spectrum for Dirac electrons is significantly different
from the spectrum for electrons in a conventional 2DEG which
is given as ε(n) = h̄ωc(n + 1/2). The Landau level spectrum
in graphene has a

√
n dependence on the Landau level index

as against the linear dependence in a 2DEG. The monolayer
graphene has four-fold degenerate (spin and valley) states with
the n = 0 level having energy ε(n = 0) = 0. The
quasiparticles in this system are chiral, exhibiting π Berry’s
phase.

3. Electron energy spectrum for bilayer graphene

The Landau level energy eigenvalues and eigenfunctions are
given by [5]

ε(n) = ωb

√
n(n − 1), (4)

�±
n,K = 1√

2

⎛

⎜⎜
⎝

�n

±�n−2

0
0

⎞

⎟⎟
⎠ , (5)

�±
n,K ′ = 1√

2

⎛

⎜⎜
⎝

0
0

±�n−2

�n

⎞

⎟⎟
⎠ , (6)

where ± are assigned to electron and hole states, ωb = eB
m∗

is the cyclotron frequency of electrons in bilayer graphene
and m∗ is the effective mass given as 0.044me with me

being the bare electron mass. The Landau level spectrum of
electrons given by equation (4) is distinctly different from that
of monolayer graphene and a conventional 2DEG system. The
electrons in the bilayer are quasiparticles that exhibit parabolic
dispersion with a smaller effective mass than the standard
electrons. Bilayer graphene has four-fold degenerate (spin and
valley) states other than the n = 0 level with energy ε(n =
0) = 0 which is eight-fold degenerate. These quasiparticles
are chiral, exhibiting 2π Berry’s phase.

3.1. Inter-Landau-band plasmon spectrum of monolayer and
bilayer graphene in a magnetic field

The dynamic and static response properties of an electron
system are all embodied in the structure of the density–density
correlation function. We employ the Ehrenreich–Cohen self-
consistent-field (SCF) approach [22] to calculate the density–
density correlation function. The SCF treatment presented here
is by its nature a high density approximation which has been
successfully employed in the study of collective excitations
in low-dimensional systems both with and without an applied
magnetic field. It has been found that SCF predictions of
plasmon spectra are in excellent agreement with experimental
results. Following the SCF approach, one can express the
dielectric function as

ε(q̄, ω) = 1 − vc(q̄)	(q̄, ω), (7)

where the two-dimensional Fourier transform of the Coulomb
potential vc(q̄) = 2πe2

κq , q = (q2
x + q2

y)
1/2, κ is the background

dielectric constant and 	(q̄, ω) is the non-interacting density–
density correlation function

	(q̄, ω) = 2

πl2

∑
Cnn′

(
q̄2

2eB

)
[ f (ε(n) − f (ε(n′))]

× [ε(n) − ε(n′) + ω + iη]−1, (8)

where Cnn′(x) = (n2!/n1!)(x)n1−n2e−x [L
n1−n2

n2
(x)]2 with n1 =

max(n, n′), n2 = min(n, n′), L
l

n(x) an associated Laguerre

polynomial with x = q̄2

2eB here. This is a convenient form of
	(q̄, ω) that facilitates writing of the real and imaginary parts
of the correlation function. The plasmon modes are determined
from the roots of the longitudinal dispersion relation

1 − vc(q̄) Re 	(q̄, ω) = 0 (9)

along with the condition Im 	(q̄, ω) = 0 to ensure long-lived
excitations. Employing equations (8) and (9) gives

1 = 2πe2

κ q̄

2

πl2

∑

n,n′
Cnn′ (x) (I1(ω) + I1(−ω)), (10)
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I1(ω) =
(

f (ε(n))

ε(n) − ε(n′) + ω

)
, (11)

and the factor of 2 is due to valley degeneracy. The plasmon
modes originate from two kinds of electronic transitions:
those involving different Landau bands (inter-Landau-band
plasmons) and those within a single Landau-band (intra-
Landau-band plasmons). Inter-Landau-band plasmons involve
the local 2D magnetoplasma mode and the Bernstein-like
plasma resonances, all of which involve excitation frequencies
greater than the Landau-band separation. Since, in this work,
we are not considering Landau level broadening only the inter-
Landau-band plasmons will be investigated.

We now examine the inter-Landau-band transitions. In this
case n �= n′ and equation (11) yields

I1(ω) = f (ε(n))

(ω − �)
, (12)

where � = (ε(n) − ε(n′)) which permits us to write the
following term in equation (10) as

(I1(ω) + I1(−ω)) = 2
� f (ε(n))

(ω)2 − (�)2
. (13)

Next, we consider the coefficient Cnn′(x) in equation (10) and
expand it to lowest order in its argument (low wavenumber
expansion). In this case, we are only considering the
n′ = n ± 1 terms. The inter-Landau-band plasmon
modes under consideration arise from neighbouring Landau
bands. Hence for n′ = n + 1 and x � 1, using the
following associated Laguerre polynomial expansion L

l

n(x) =∑n
m=0(−1)m (n+l)!

(l+m)!(n−m)!
xm

m! for l > 0 [23] and retaining the
first term in the expansion for x � 1, Cnn′(x) reduces to

Cn,n+1(x) → (n + 1)x, (14)

and for n′ = n − 1 and x � 1 it reduces to

Cn,n−1(x) → nx . (15)

Substitution of equations (13)–(15) into (10) and replacing
x = q̄2

2eB yields

1 = 2πe2

κ q̄

2

πl2

∑

n

⎛

⎜⎜
⎝(n + 1)

(
q̄2

2eB

) 2
(

ωg

2
√

n

)
f (ε(n))

(
ω2 −

(
ωg

2
√

n

)2
)

+ n

(
q̄2

2eB

) 2
(
− ωg

2
√

n

)
f (ε(n))

(
ω2 −

(
ωg

2
√

n

)2
)

⎞

⎟⎟
⎠ . (16)

In obtaining the above result we note that � = (
√

n′ −√
n)ωg.

Therefore, � = ωg

2
√

n
for n′ = n + 1, and � = − ωg

2
√

n
for

n′ = n − 1. We are considering the weak magnetic field
case where many Landau levels are filled. In that case, we
may substitute

√
nF for

√
n in equation (16). nF = ( εF

ωg
)2 is

the Landau level index corresponding to the Fermi energy εF.
Equation (16) can be expressed as

ω2 = 2πe2vF

κ
q̄

(
∑

n

2eB

πkF
f (ε(n))

)

. (17)

Figure 1. Inter-Landau-band magnetoplasmon energy as a function
of inverse magnetic field: graphene monolayer (solid curve), 2DEG
(dashed curve). The dashed curve has been scaled by 4.2×.

In terms of the 2D electron density n2D = ∑
n

2eB
π

f (εn) the
inter-Landau-band plasmon dispersion relation for monolayer
graphene can be expressed as

ω2 = 2πe2vFn2D

κkF
q̄. (18)

A corresponding calculation for bilayer graphene can be
carried out. The equation that replaces equation (16), given
above for monolayer graphene, is

1 = 2πe2

κ q̄

2

πl2

∑

n

(
(n + 1)

(
q̄2

2eB

)
2(ωb) f (εn)

(ω2 − (ωb)2)

+ n

(
q̄2

2eB

)
2(−ωb) f (εn)

(ω2 − (ωb)2)

)
. (19)

For bilayer graphene, equation (19) can be expressed as

1 = 4πe2

κm∗ q̄
1

ω2 − (ωb)2

(
m∗ωb

π

∑

n

f (εn)

)

. (20)

If we define n2D = m∗ωb
π

∑
n f (εn) and the plasma frequency as

ω2
p,2D = 4πn2De2

κm∗ q̄, (21)

then the inter-Landau-band plasmon dispersion relation for
bilayer graphene is

ω2 = (ωb)
2 + ω2

p,2D. (22)

3.2. Discussion of results

Equations (18) and (22) are the central results of this work.
Equation (18) is the inter-Landau-band plasmon dispersion
relation for monolayer graphene. The inter-Landau-band
plasmon energy as a function of the inverse magnetic field for
the monolayer and bilayer graphene system with the plasmon
energy for 2DEG at zero temperature is presented in figures 1
and 2. The following parameters were employed for doped
graphene (SiO2 substrate): κ = 2.5, n2D = 3 × 1015 m−2,

3
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Figure 2. Inter-Landau-band magnetoplasmon energy as a function
of inverse magnetic field: graphene bilayer (solid curve), 2DEG
(dashed curve). The dashed curve has been scaled by 2.6×.

vF = 106 m s−1. For the conventional 2DEG (a 2DEG
at the GaAs–AlGaAs heterojunction) we use the following
parameters: m = 0.07me (me is the electron mass), κ =
12 and n2D = 3 × 1015 m−2. For the electron density
and magnetic field considered, electrons fill approximately 30
Landau levels, the upper limit in the summation for n2D is
taken to be n = 30 while the lower limit is n = 0. In
figure 1 we have plotted the plasmon energy as a function of
the inverse magnetic field for both monolayer graphene and
a conventional 2DEG. The SdH-type oscillations, which are
a result of emptying out of electrons from successive Landau
levels when they pass through the Fermi level as the magnetic
field is increased, are clearly visible. The amplitude of these
oscillations is a monotonic function of the magnetic field.
These oscillations have a π Berry’s phase due to the chiral
nature of the quasiparticles in this system, the phase acquired
by Dirac electrons in the presence of a magnetic field [1]. We
also observe that the plasmon energy is ∼4.2 times greater than
in the 2DEG for the parameters considered. This is essentially
due to the higher Fermi energy of the electrons in graphene and
the smaller background dielectric constant.

For bilayer graphene, we consider equation (22). There
are two main differences between the plasmon dispersion
relation for bilayer graphene given in equation (22) and the
standard 2DEG result. Firstly, the cyclotron frequency ωb in
the bilayer is ∼2 greater than the cyclotron frequency ωc at the
same magnetic field in the 2DEG due to the difference in the
effective masses of the electrons in the two systems. Secondly,
the 2D plasma frequency ωp,2D is also larger than in the 2DEG
for the same wavenumber q̄ due to the smaller effective mass of
electrons in the bilayer compared to the 2DEG and the smaller
background dielectric constant k = 3 in the bilayer. The
inter-Landau-band plasmon energy as a function of the inverse
magnetic field for a doped bilayer and the 2DEG is shown in
figure 2. The following parameters were used (SiO2 substrate):
κ = 3, n2D = 3 × 1015 m−2 and m∗ = 0.044me with me

being the usual electron mass. We again observe SdH-type
oscillations whose amplitude is a monotonic function of the
magnetic field. We observe that the plasmon energy is ∼2.6
times greater than in the 2DEG due to the smaller effective

mass, valley degeneracy and smaller background dielectric
constant. Due to the chiral nature of the quasiparticles in
bilayer graphene, 2π Berry’s phase is evident in the SdH-
type oscillations displayed in figure 2. In conclusion, we
have determined the inter-Landau-band plasmon frequency
for both monolayer and bilayer graphene employing the SCF
approach. The inter-Landau-band plasmon energy is presented
as a function of the inverse magnetic field. The SdH-type
oscillations are clearly visible in both the systems and their
amplitude is a monotonic function of the magnetic field. Due to
the chiral nature of the quasiparticles in the mono- and bilayer
graphene system, π and 2π Berry’s phases are observed in the
SdH-type oscillations in the plasmon spectrum.
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